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Sets

* Aset s a collection of objects
— Unordered
— Objects are called elements or members of the set
— The set contains i1ts members

— x € S denotes x 1s a member of the set S, or x belongs to the
set S.

— X ¢ S denotes x 1s not a member of the set S, or x does not
belong to the set S.

Uppercase letters used to denote sets where lowercase letters are
used to denote members of the set.
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Set description
* A set can be described using one of two forms

— enumerated form (1.e. as a list)

A=1{2,4,6,8}

B = {Sun, Mon, Tue, Wed, Thur}

— predicate form (1.e. using a property that defines the
clements of the set)

A = {x | x 1s an even positive integer less than 10}

A={x|x e N,xi1seven, x <10}

B = {d | d is a working weekday}
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Some standard numerical sets

N = the set of Natural numbers, the counting numbers, non-
negative integers

Z. = the set of all integers

Z. " = set of all positive integers
Z. - = set of all negative integers
R = the set of Real numbers

C = the set of complex numbers
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Some standard numerical sets

N= [D ...}, the set of natural numbers
L={..,-2-1,0,1,2,..}, theset of integers
A { 3 ] the set of positive integers

Q=1{p/q|pel qelandq#0) the setof rational numbers
R, the set of real numbers

R, the set of positive real numbers

C, the set of complex numbers.
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Empty set

* A special set with no elements
* Denoted &

* D=1}

* (J1is a subset of every set

* Example
X ={x|x € Nand x <0} clearly the predicate
“x € N and x <0 1s false, therefore X = &
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Equal Sets

* Two sets are said to be equal 1f they contain the same elements

- A=B=>foreveryx e A,x e Bandforeveryx e B,x € A

* Example
A={a,b,c,d},B=1{c,a,b,d},C={b,c,b,a,a,c,d, b, a, d}
A=B=C

Note: repeating an element means one occurrence of that element
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The Universal Set

* The universal set, denoted by U, contains all elements that could
be under discussion in a particular situation

* U changes according to circumstances

* e¢.g. If we are dealing with months of the year, = U = {January,
February, March, ..., December} If we are dealing with numbers,
U might be R (the set of all real numbers)
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Cardinality

* Cardinality of a set A, denoted | A | 1s the number of elements
contained in the set A.

* Example

LetA={a,,b,c,d, e f},B={a,b,c, ..., 7}

C=1{1,2,3,...,10}, D= {x | x 1s a student registered for Discrete
Mathematics}

|A|=6, | B|=26, |C| =10

IN|=7 [R|[=7 [Z[=? |D[=?
S| =7
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Venn Diagram

Venn diagram can be used to represent sets graphically
The universal set U 1s represented by a rectangle
Other sets — inside U — are represented by circles

Venn diagram 1s usually used to represent relationships between
sets

— Can represent relationships of up to 3 sets
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Venn Diagram

\4

U = set of English letters
V = set of vowels
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Subsets

* The set A is a subset of the set B, denoted A < B, if and only if
every element of A 1s also an element of B

— B 1s a superset of A denoted B o A
* Example
LetA={a,,b,c,d, e {f},B={a,b,c, ..., 7}
C={1,2,3,...,10}
Clearly A — B where A 1s not a subset of C
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Subsets
e Exercise

—Describe the relationship between
R, C, Z, 7", Z: and N using
subset notation and Venn diagram

* Solution
7" cNcZcRcC
—L L e




Subsets
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Subsets
* For every set X
— D X.
—XcX
 For two sets A and B
A=Bifandonlyif AcBand B Cc A
e [f A — B and A # B that there 1s at least one

element in B which 1s not in A, then A 1s said
to be a proper subset of B denoted A B
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Power set

Let X be a set, the set of all subsets of X, denoted P(X) 1s

called the power set of X.
P(X)| =2/%

Example

— LetA={a, b,c},then P(A)={ { }, {a}, {b}, {c}, {a, b}, {a, c},

{b,c}, {a,b,c} }
| P(A) | =2lAl=23=§
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Power set

* PQIL 2=
* P(ih})=

* The empty set and the set itself are members of the power set (the

set of subsets)

* PD)=1{9, 0} = I}
* PADH =10, {5 ={{L {11}
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Cartesian Product

* The Cartesian product of two sets A and B denoted
A x B, 1s the set of ALL ordered pairs (a, b) such
thatacAandb € B

* AxB={(a,b)|acAand b € B}

* Note:
(a, b) is an ORDERED pair =» (a,b) # (b, a)unlessa=b
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Cartesian Product

* Example
Let X={a,b},Y=1{1,2,3}
XxY=1{(@a,l1),(a,?2),(,3),(,1),(Db,2),(b,3)}

Note :

| AxB |= |A|x]|B]

AxB # BxAunlesssA=JdorB=9
ifA=JorB=C thenAxB=0
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Cartesian Product

AxBxC={(a,b,c)laeA,beBandc e C}

(a, b, ¢) 1s called an ordered tuple
(AxB)xC #AxB xC

A"={(a,, a,, a,, ...,

a)la eA,1=1,2,3,...,n}
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Set Operations

 The intersection of two sets A and B denoted AN Bis a

new set containing all common elements of A and B

Elements those are members of A and members of B at the same time

ANB={x|x€Aandx € B}

« IfAN B=(, then A and B are said to be disjoint sets.

No common elements

25
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e ANB

26

Intersection
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e ANBNC

Intersection
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 The union of two sets A and B denoted A U B is a new set that
contains all elements of A with all elements of B. AUB = {x|x
€ Aorx € B},

* The complement of a set A denoted A 1s a new set consists of all

the elements of the universal set that are notin A. A= {x|x €U
and x € A}
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e AUB
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Complement
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* The difference of A and B, or the complement of B relative to A,
denoted A - B, is the set of all elements of A which are not
members of B

A-B={x|xeAandx ¢ B}

Example
7-7 =7-U{0}
N-{10, 11,12, ...} ={0,1,2,3,4,5,6,7, 8,9}
U-A=A
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e Note

32

A-B=ANB

Difference
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Symmetric Difference
c ADBorAA B

* Note A®@B=(A-B)U(B-A)
=(Au B)-(An B)

JOENE
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LetA=1{2,3,4,5,6,7} B={1,2,4,7, 8}
ANB=
AU B =
A—-B=
B — A=
ADPB-=
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Exercise

o LetU: {a, b, C) d, ea f) ga h9 iﬁj}ﬁ
A={a,b,c,d,e £, g}, B=1{b,d 1 1,;},
C={a,c, 1, j}. Find:

35
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IsA=B?

Exercise

* A=1{0, {a}, {b}, {a,b}}, B={X| X c {a, b}}
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Set Operations

« [AUB|=|A|+|B|-|AN B|

37
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Laws of Sets

Law Name
AUvD=A Identity Laws
ANnU=A
Au U=U Domination Laws
ANGD =0
AUA =A Idempotent Laws
ANA =A

A= A Double complement
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Laws of Sets

Law Name
AuB=BUA Commutative Laws
ANB=BnNA

Au(BuC)=(AuB)uC
AN(BNnC)=(AnB)nC

Associative Laws

ANn(BuC)=(AnB)U(ANC(C)
Au(BnC)=(AuB)n(AUC(C)

Distributive Laws

AU
AﬂB

||
NN
& &

N
U

DeMorgan’s Laws

39
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Laws of Sets

Law

Name

AU(AnB)=A
ANn(AuB)=A

Absorption Laws

AU A= U
AN A= @

Complement Laws

40
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c AU(AUB)
(A UA) U B Assoc
(A)UB Idem

c An(ANB)

v EWE
0559016968




42

Generalized Union and intersection
Fornsets A;, A,, A;, ..., A

=2 Ua:UaaU-Uas




Generalized Union and intersection

o A=, it it2, .0

= =
Uﬂf - U{z, +1i4+2,.)=1{123, .1
=1 =1

=] =]
ﬂaf _ ﬂ{m FLi+2. )= nln+d,.)
=1 =1
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Finite & Infinite Sets

A set S is said to be finite 1f there are n distinct elements

* A set 1s said to be infinite if it 1s not finite

* Example

A={x|xeNandx<10},B=1{a,b,c, ... .z}
O0=1{1,3,5,...},E=1{2,4,6, ...}
|A=2,|B|=?10|=2|E|=?

A and B are finite set, where O and E are inifinite

44
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Countable & Uncountable Sets

e A finite set 1s countable

 If an infinite set has the same cardinality as the set of natural
numbers it 1s said to be countable
1
1

Since 1t has a one-one correspondence with N, it i1s considered to be
countable

Consider the set of odd positive integers

L

11

N el [N\)

oo s 2
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Countable & Uncountable Sets

e Exercise

* Which of the following sets 1s countable and which 1s
uncountable:
A={x|x=2n,n e N}
B={x|x=2n+1,n € N}
C={x|xeR 0<x<1}
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Exercises

 Let A= {x|x1s a small letter in the English alphabet} B={y |y

1s a capital letter in the English alphabet }. Find

P(A) | =

P(A U B)
P(A N B)
P(A x B)
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Exercises

 Let A= {x|x1s a small letter in the English alphabet} B={y |y

1s a capital letter in the English alphabet }. Find

P(A) | = 226 = 67,108,864

P(A U B)
P(A N B)
P(A x B)

1 0203

=252=4.5036 x 10'3
= |P(D)|=2121=20=1

:2|A>< B|:2|A\x \B|:226x26:2676:3.1353 %
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Exercises

* There are 200 students, all of them sat for both “programming”
and “discrete mathematics” exams. 150 students passed the
programming exam, 150 students passed the discrete mathematics
exam. No student failed both exams How many students passed
both “programming’ and “discrete mathematics” exams?
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Exercises

Passed Programming| = 150
Passed Discrete Math| = 150
Passed Programming U Passed Discrete Math| = 200

Passed Programming U Passed Discrete Math| = | Passed
Programming| + | Passed Discrete Math| — | Passed Programming
M Passed Discrete Math|

200 =150 + 150 — | Passed Programming M Passed Discrete Math|

| Passed Programming M Passed Discrete Math| = 150 + 150 — 200
=100
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Sequences

* A sequence 1s an ordered list of elements
—1, 5,9, 13 1s a finite sequence
—1,3,5,...,2n—1, ... 1s an infinite sequence

Or

* A sequence 1s a function from a subset of
integers, usually Z or N, to a set S
a, 1s used to denote the 1image of n
a_1is called the n term of the sequence
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Example

* Consider the sequence { a, } with q = —
The sequence 1s a,, a,, a;, a,, ...
That 1s i l l l

'2°3°47

 Consider the sequence { a, } with a,=

The sequence 1s a,, a,, a;, a,, ...

Thatis 1,4, 9, 16, ....

The first one 1s decreasing while the second is increasing
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* A sequence s, 1s said to be increasing if forall ns, <s ., .

* A sequence s, 1s said to be decreasing if forall ns, > s ., .
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Geometric Progression

« A geometric progression is a sequence of the form a, ar, ar’, ar’,
Lo art, L.

— The 1nitial term a and the common ratio rare real numbers
Example: let 2= 3 and r= 2 then
the geometric progression is 3, 6, 12, 24, 48, ...
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Subsequence

 Let {s,} beasequence, then the sequence { ¢, } 1s said to be a
subsequence of { s, } if { £, } contains some certain elements of {
S, }.

 Examplelet S={2n+1|n=1,2,3,...}

and 7= {2+ 1|n=1,2,3,... }

Clearly §=3,5,7,...and 7=3,9, 19, ... S5 contains odd integers >

1, and 7 contains some of the odd numbers, therefore 7'is a
subsequence of S
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Summations

* Let {s,} be a sequence, then the sum

m
E S, =8, +S8, +s;+...+5
i=1

m

this 1s called the sigma notation

The Greek letter X (s1igma) denotes the summation of m terms from
the sequence {s,}.

e gl [
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Products

* Let {s,} be a sequence, then the sum

m
I ISZ. = 5, XS, X §; X... XS
=1

this 1s called the p1 notation

The Greek letter I (p1) denotes the product of m terms from the
sequence {s, }.
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Strings

Let X be a finite nonempty set, a string a over X 1s a finite
sequence of elements from X

The length of a string o 1s the number of elements of o, denoted |
o |
The empty/null string A (lambda) 1s a string of length zero.
Example:

Let X = {a, b, ¢, d} and o = bbcaaca, then | o | =7

o = bbcaaca = b’ca’ca
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Strings

o X" = {set of all strings over X including A}
e X"=X"-{\},the set of all nonempty strings
* Example
— LetA={A,B,C, ...,Z,a,b,c, ..., 7}
— A" is the set of all possible strings/words including the null
string
— A" 1s the set of all possible strings/words excluding the null
string
— The set of all English words 1s a subset of A™.
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Strings

Concatenation of two strings 1s a new string formed by putting
one string after the other, or writing one string followed by the
other string

Example

Let oo = my and 3 = computer then o = mycomputer and Bo =
computermy

o[ =]PBa|=]al +[P]
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