P.4: Polynomials:

Definition of a polynomial in x:

A polynomial in x is an algebraic expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_1 x^1 + a_0$$

Where a_n , a_{n-1} , ..., a_0 are real numbers, $a_n \neq 0$, and n is a nonnegative integer. The polynomial is of **degree** n, a_n is **leading coefficient**, and a_0 is the **constant term**.

The degree of polynomial is the greatest degree of all the terms.

A polynomial that has exactly **one term** is called a **monomial**.

A polynomial that has **two terms** is called a **binomial**.

A polynomial that has three terms is called a trinomial.

Example 1: Is the algebraic expression a polynomial? If it is, write the polynomial in standard form and find the degree of polynomial:

1)
$$2x + 3x^2 - 5$$

2)
$$2x + 3x^{-1} - 5$$

$$3)\frac{2x+3}{x}$$

$$4)\sqrt{8} x^3 + 15x^4 + 91$$

5)
$$x^{\frac{2}{3}} + 1$$

Adding and Subtracting Polynomials:

Polynomials are added and subtracted by combining like terms

Example 2: Perform the indicated operations write the resulting polynomial in standard form and indicate its degree

$$12)(18x^4 - 2x^3 + 8 - 7x) - (6x^3 + 9x^4 - 5x + 7) =$$

$$14)(8x^2 + 7x - 5) - (3x^2 - 4x) - (-6x^3 - 5x^2 + 3) =$$

P.4: Polynomials:

Multiplying Polynomials:

Multiply each term of one polynomial by each term of the other polynomial. Then Combine like terms.

Example3: Find each product

$$(2x-3)(x^2-3x+5)$$

$$(8x^3 + 3)(x^2 - 5)$$

Special Products:

$$(A - B)(A + B) = A^{2} - B^{2}$$

$$(A + B)^{2} = A^{2} + 2AB + B^{2}$$

$$(A - B)^{2} = A^{2} - 2AB + B^{2}$$

$$(A - B)^{3} = A^{3} + 3A^{2}B + 3AB^{2} + B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

$$(A - B)^{3} = A^{3} - 3A^{2}B + 3AB^{2} - B^{3}$$

د.حاتم علي 0559016968

P.4: Polynomials:

Polynomial in Two Variables:

Polynomial in two variables x and y contains the sum of one or more monomials in the form ax^ny^m . a is the coefficient. The exponents, m and n represent whole numbers

The degree of the monomial ax^ny^m is m + n.

The degree of Polynomial in two variables: is the <u>highest degree</u> of all its terms.

Example4: Is the algebraic expression a polynomial? If it is, find the degree of polynomial:

a)
$$3x^2y^3 + 2x^2y + 1$$

c)
$$2x^2y + 3x^4y^{\frac{1}{2}} - 5$$
 b) $3x^2y^{-1} + 3x^2y$

b)
$$3x^2y^{-1} + 3x^2y$$

d)
$$3x^5y^3 + 2x^9y + 1$$

Example5: Perform the indicated operations. Indicate the degree of the resulting polynomials.

62)
$$(7x^4y^2 - 5x^2y^2 + 3xy) + (-18x^4y^2 - 6x^2y^2 - xy)$$

66)
$$(5x^4y^2 + 6x^3y - 7y) - (3x^4y^2 - 5x^3y - 6y + 8x)$$

د.حاتم علی 0559016968

P.4: Polynomials:

Example6: Find the product:

67)
$$(x + 5y)(7x + 3y)$$

3)
$$(5x + 3y)^2$$

77)
$$(x - y)(x^2 + xy + y^2)$$

$$71)(3xy - 1)(5xy + 2)$$

75)
$$(x^2y^2 - 3)^2$$

81)
$$(7xy^2 - 10y)(7xy^2 + 10y)$$