Definition:

The *exponential function* f with base b is defined by $f(x) = b^x$ or $y = b^x$ where b is a positive constant other than 1. $(b > 0, b \ne 1)$.

x is any real number.

Domain of exponential function $f(x) = b^x$: all real numbers (R).

Range of exponential function $f(x) = b^x$: $(0, \infty)$

Examples:

$$f(x) = 2^x$$
, $g(x) = 10^x$, $h(x) = \pi^x$, $j(x) = \left(\frac{1}{2}\right)^{x-1}$, $k(x) = 3^{-x+1}$

Standard Form

The function $f(x) = e^x$ is called a <u>natural exponential function</u>. The irrational number $e \approx 2.72$ is called a <u>natural base</u>.

Examples of non exponential functions:

$$g(x) = (-1)^x$$
, $f(x) = x^x$, $k(x) = 1^x$, $g(x) = (-4)^x$, $H(x) = x^2$
 $f(x) = (-1)^x$, $f(x) = x^x$, $k(x) = 1^x$, $f(x) = (-4)^x$, $f(x) = x^2$
 $f(x) = (-4)^x$

> Evaluating an exponential function:

Let
$$g(x) = (1.56)^x$$
 evaluate $g(4) = (1.56)^4 = 5.922$

<u>Example 1:</u> Approximate each number using a calculator . <u>Round your answer to three</u> <u>decimal places</u>

1

5)
$$4^{-1.5} = 0.125$$

9)
$$e^{-0.95} = 0.3867 \approx 0.387$$

> Graphing Exponential Functions:

Example 2:

13) Graph $f(x) = \left(\frac{3}{2}\right)^x$. Then find domain, range and the equation of asymptote.

x	f(x)	(x,y)
-1	$\left(\frac{3}{2}\right)^{x} = \left(\frac{3}{2}\right)^{-1} = 0.7$	(1-0.7)
0	$\left(\frac{3}{2}\right)^{x} = \left(\frac{3}{2}\right)^{0} = 1$	(0,1)
1	$\left(\frac{3}{2}\right)^{x} = \left(\frac{3}{2}\right)^{1} = 1.5$	(1,1.5)

● --- Asymptote

f(x)			
Domain	(-∞,∞)or R		
Range	(0)		
Horizontal	on the x-axis		
Asymptote H.A	y = 0		

17) Graph $f(x) = (0.6)^x$. Then find domain, range and the equation of asymptote

х	f(x)	(x, y)
_	$(0.6)^{x} = (0.6)^{-1} \cdot .66$	(-1,1.66)
0	$(0.6)^{x} = (0.6)^{0} = 1$	(0,1)
	$(0.6)^{2} = (0.6)^{2} = 0.6$	(1 ,0.6)

• The	graph	is	decreasive	becouse	0>6>	١
-------	-------	----	------------	---------	------	---

f(x)			
Domain	(-00,00) or R		
Range	(0,∞)		
Horizontal	on the x-axis		
Asymptote H.A	y=0		

Characteristics of Exponential Functions of the Form $f(x) = b^x$

- **1.** The domain of $f(x) = b^x$ consists of all real numbers: $(-\infty, \infty)$. The range of $f(x) = b^x$ consists of all positive real numbers: $(0, \infty)$.
- **2.** The graphs of all exponential functions of the form $f(x) = b^x$ pass through the point (0,1) because $f(0) = b^0 = 1$ ($b \ne 0$). The y-intercept is 1. There is no x-intercept.
- **3.** If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
- **4.** If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
- 5. $f(x) = b^x$ is one-to-one and has an inverse that is a function.
- **6.** The graph of $f(x) = b^x$ approaches, but does not touch, the *x*-axis. The *x*-axis, or y = 0, is a horizontal asymptote.

Transformation of Exponential Function $(f(x) = b^x)$

Transformation	Equation	Description
Vertical Shift	$g(x) = b^x + c^{\uparrow}$	$(x,y) \to (x,y+c)$
shift in y	$g(x) = b^x - c$	$(x,y) \to (x,y-c)$
Horizontal Shift	$g(x) = b^{x+c}$	$(x,y) \to (x-c,y)$
shift in x	$g(x) = b^{x-c} \rightarrow$	$(x,y) \to (x+c,y)$
Reflection about x-axis (-y)	$g(x) = -b^x$	$(x,y) \to (x,-y)$
	$g(x) = b^{-x}$	$(x,y) \to (-x,y)$
Reflection about y-axis (- x)		
Vertical stretching or shrinking	$g(x) = cb^x$	$(x,y) \to (x,cy)$
Horizontal stretching or shrinking	$g(x) = b^{cx}$	$(x,y) \to (\frac{x}{c},y)$

Transformations Shifts Vertically Horizauntly shift in Shift in X Reflection Reflection about y-axis Reflection about x-axis g(x) = -f(x)g(x) = f(-x)f(x) - x g(x) (x, y) - (-x, y) $\begin{array}{ccc} \mathcal{S}(x) & g(x) \\ (x, y) & & (x, -y) \end{array}$ Vertically Stretching Shrinking Graphs f(x) = g(x) (x, y) = (x, c.f)0< (< 1 0> C Stretch Shrink

Example3:

29) Begin by Graphing $f(x) = 2^x$.then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function's domain and range

a)
$$h(x) = 2^{x+2} - 1$$

x	f(x) =	2 ^x	(x,y)	$h(x) = 2^{x+2} - 1$
				(x-2,y-1)
-1	2 =	12	(一, 支)	$(-1-2, \frac{1}{2}-1)$ $(-3, -\frac{1}{2})$
0	20=		(0,1)	(-2,0)
1	2 =	2	(1,2)	(1-2, 2-1)

$f(x) = 2^x$			
Domain	(-00,00)		
Range	(0,00)		
Horizontal Asymptote H.A	y=0		

$h(x) = 2^{x+2} - 1$			
Domain	(- 00,00)		
Range	(-1, ∞)		
Horizontal Asymptote H.A	y = 1		

Example 4: Begin by Graphing $f(x) = e^x$. then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function's domain and range

$$g(x) = e^{-x} + 2$$

X	$f(x) = e^{x}$	(x,y)	(-x, yt2)
-(e' = 0.4	(-1,0.4)	(1,2.4)
٥	e°= 1	(0,1)	(0, 3)
	e= 2.4	(1,2.4)	(-1, 4.7)

$g(x) = e^{-x} + 2$			
Domain (-∞, ∞)			
Range	(2,00)		
Horizontal Asymptote H.A	y=2		

Example5:

Begin by Graphing $f(x) = \left(\frac{1}{2}\right)^x$ then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function's domain and range

$$g(x) = -3\left(\frac{1}{2}\right)^{x-1} + 1$$

х	f(x)	(x, y)	(x+1,-3y+1)
-1	$\left(\frac{1}{2}\right)^2 = 2$	(-1, 2)	(-1+1, -3(2)+1)
D	$\left(\frac{1}{2}\right)^0 = 1$	(0,1)	(0+1, -3(1)+1)
	$\left(\frac{1}{2}\right)' = \frac{1}{2}$	$\left(1,\frac{1}{2}\right)$	$(1+1, -3(\frac{1}{2})+1)$ (2, -0.5)

f(x)	
Domain	(-00,00)
Range	(o , ~)
Horizontal Asymptote H.A	y=0

	g(x)
Domain	$(-\infty,\infty)$
Range	(-0,1)
Horizontal Asymptote	-3(0)+ =
H.A	y=1

Example 6:

<u>61)</u> Give the equation of the exponential function whose graph is shown.

- The Standard form $f(x) = b^x$ or $y = b^x$
- $f(x) = b^{x} = 4 = b^{(1)} \rightarrow 4 = b$
- using the point (1, Y)• The final answer is $F(x) = Y^{x}$

Example:

The graph of an exponential function is given. Select the functio from the functions listed.

- \bigcirc A. $f(x) = 3^X$
- OB. $f(x) = 3^{x+2}$
- \bigcirc C. $f(x) = 3^{x} 2$
- $D. f(x) = 3^{x} + 2$

Example

Graph the function.

Use the graph of $f(x) = 2^{x}$ to obtain the graph of $g(x) = 2^{x+3} + 2$.

O A.

O C.

•
$$g(x) = -e^{x+3} + 1$$

Range: (1, -)

Asymptote: y=1

Extra: find domain. Range and asymptote
$$g(x) = -e^{x+3} + 1$$

$$g(x) = \frac{1}{2}(2)^{x-1} + 3$$

Domain: (-0, 00) or R Domain: (-0, 00) or R

Range: (3, ~)

Asymptote: 4=3

Use a calculator with a y^x key or a \land key to solve Exercises 65–70.

65. India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world's population will live in these two countries alone. The exponential function $f(x) = 574(1.026)^x$ models the population of India, f(x), in millions, x years after 1974.

a. Substitute 0 for x and, without using a calculator, find India's population in 1974. $f(x) = 574 (1.026)^{\circ} = 574$

b. Substitute 27 for x and use your calculator to find India's population, to the nearest million, in the year 2001 as modeled by this function. $f(x) = 574 (1.026)^{-1}$ without decimals 2001-1974-0X=27

c. Find India's population, to the nearest million, in the year 2028 as predicted by this function. $f(x)=574 \ (1.026)^{51} \ \implies 2295$ $2028-1974 \rightarrow x=54$ d. Find India's population, to the nearest million, in the year 2055 as predicted by this function. $f(x)=574 \ (1.026)^{61} \rightarrow 4590$ $2055-1974 \rightarrow x=81$

e. What appears to be happening to India's population every 27 years? $2055 - 1974 \rightarrow \chi = 81$

Doubles up (get multiplied by 2)

- Increases by double

73. In college, we study large volumes of information—information that, unfortunately, we do not often retain for very long. The function

$$f(x) = 80e^{-0.5x} + 20$$

describes the percentage of information, f(x), that a particular person remembers x weeks after learning the information.

- a. Substitute 0 for x and, without using a calculator, find the percentage of information remembered at the moment it is first learned. $\rho(x) = 80e^{-0.5(0)} + 20 \implies 80(0) + 20 \implies 100 \times$
- b. Substitute 1 for x and find the percentage of information that is remembered after 1 week. x = 1 $\begin{cases} (x) = 80e^{-0.5(t)} + 20 \rightarrow 69 \end{cases}$ C. Find the percentage of information that is remembered after 4 weeks. x = 1 $\begin{cases} (x) = 80e^{-0.5(t)} + 20 \rightarrow 31 \end{cases}$ d. Find the percentage of information that is remembered after one year (52 weeks). x = 52 $\begin{cases} (x) = 80e^{-0.5(t)} + 20 \rightarrow 20 \end{cases}$

$$x = 52$$
 $f(x) = 80e^{-0.5(52)} + 20 = 20 /$